Planetary Cliff Descent Using Cooperative Robots

نویسندگان

  • Erik Mumm
  • Shane Farritor
  • Paolo Pirjanian
  • Chris Leger
  • Paul S. Schenker
چکیده

Future robotic planetary exploration will need to traverse geographically diverse and challenging terrain. Cliffs, ravines, and fissures are of great scientific interest because they may contain important data regarding past water flow and past life. Highly sloped terrain is difficult and often impossible to safely navigate using a single robot. This paper describes a control system for a team of three robots that access cliff walls at inclines up to 70◦. Two robot assistants, or anchors, lower a third robot, called the rappeller, down the cliff using tethers. The anchors use actively controlled winches to first assist the rappeller in navigation about the cliff face and then retreat to safe ground. This paper describes the coordination of these three robots so they function as a team to explore the cliff face. Stability requirements for safe operation are identified and a behavior-based control scheme is presented. Behaviors are defined for the system and command fusion methods are described. Controller stability and sensitivity are examined. System performance is evaluated with simulation, a laboratory system, and testing in field environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi Agent Distributed Sensing Architecture with Application to Planetary Cliff Exploration

Abstract— Future planetary exploration missions will use cooperative robots to explore and sample rough terrain. To succeed robots will need to cooperatively acquire and share data. Here a cooperative multi-agent sensing architecture is presented and applied to the mapping of a cliff surface. This algorithm efficiently repositions the systems’ sensing agents using an information theoretic appro...

متن کامل

Behavior-Based Coordinated Control for Robotic Planetary Cliff Descent

Future robotic planetary exploration will need to traverse geographically diverse and challenging terrain. Cliffs, ravines, and fissures are of great scientific interest because they may contain important data regarding past water flows. Information about water is critical in the search for past life. Highly sloped terrain is difficult, and in most cases impossible, to safely navigate using a s...

متن کامل

An Architecture for Distributed Environment Sensing with Application to Robotic Cliff Exploration

Future planetary exploration missions will use cooperative robots to explore and sample rough terrain. To succeed robots will need to cooperatively acquire and share data. Here a cooperative multi-agent sensing architecture is presented and applied to the mapping of a cliff surface. This algorithm efficiently repositions the systems’ sensing agents using an information theoretic approach and fu...

متن کامل

CAMPOUT: a control architecture for tightly coupled coordination of multirobot systems for planetary surface exploration

Exploration of high risk terrain areas such as cliff faces and site construction operations by autonomous robotic systems on Mars requires a control architecture that is able to autonomously adapt to uncertainties in knowledge of the environment. We report on the development of a software/hardware framework for cooperating multiple robots performing such tightly coordinated tasks. This work bui...

متن کامل

Integrated System for Sensing and Traverse of Cliff Faces

A long duration robotic presence on lunar and planetary surfaces will allow the acquisition of scientifically interesting information from a diverse set of surface and sub-surface sites. The wide range of terrain types including plains, cliffs, sand dunes, and lava tubes will require the development of robotic systems that can adapt to possibly rapidly changing terrain. These systems include si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Auton. Robots

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2004